Supports and extreme points in Lipschitz-free spaces
نویسندگان
چکیده
منابع مشابه
Lipschitz - free Banach spaces
We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...
متن کاملOn the Extreme Points and Strongly Extreme Points in Köthe–bochner Spaces
We give the necessary conditions of extreme points and strongly extreme points in the unit ball of Köthe–Bochner spaces. The conditions have been shown to be sufficient earlier.
متن کاملExtreme and Exposed Points of Spaces of Integral Polynomials
We show that if E is a real Banach space such that E′ has the approximation property and such that `1 6↪→ ⊗̂ n,s, E then the set of extreme points of the unit ball of PI(E) is equal to {±φn : φ ∈ E′, ‖φ‖ = 1}. Under the additional assumption that E′ has a countable norming set we see that the set of exposed points of the unit ball of PI(E) is also equal to {±φn : φ ∈ E′, ‖φ‖ = 1}.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Iberoamericana
سال: 2020
ISSN: 0213-2230
DOI: 10.4171/rmi/1191